Brown Engineering

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Friday, 10 December 2010

In the lab, engineer’s novel liquid provides a solid fix for broken bones

Posted on 10:18 by Unknown
A bone-healing fluid that can be injected into breaks with a syringe shows such strong promise in lab testing, that it has been licensed from Brown by a Massachusetts biotech startup for further development.

By David Orenstein
A nonmetalic solutionNanomaterials engineer Thomas Webster is
developing alternatives to metals,which do not
occur naturally in the body and can cause
problems with surrounding tissue.
Credit: Webster Lab/Brown University

Here’s the vision: an elderly woman comes into the emergency room after a fall. She has broken her hip. The orthopaedic surgeon doesn’t come with metal plates or screws or shiny titanium ball joints. Instead, she pulls out a syringe filled with a new kind of liquid that will solidify in seconds and injects into the break. Over time, new bone tissue will take its place, encouraged by natural growth factors embedded in the synthetic molecules of the material.

Although still early in its development, the liquid is real. In the Brown engineering lab of professor Thomas Webster it’s called TBL, for the novel DNA-like “twin-base linker” molecules that give it seemingly ideal properties. The biotech company Audax Medical Inc., based in Littleton, Mass., has just announced an exclusive license of the technology from Brown. It brands the technology as Arxis and sees similar potential for repairing broken vertebrae.

“The reason we’re excited about this material is because it gets us away from metals,” Webster said. “Metals are not in us naturally and they can have a lot of problems with surrounding tissues.”

In some of his work, Webster employs nanotechnology to try to bridge metals to bone better than traditional bone cement. But TBL is an entirely new material, co-developed with longtime colleague and chemist Hicham Fenniri at the University of Alberta. Fenniri synthesized the molecules, while Webster’s research has focused on ensuring that TBL becomes viable material for medical use.

Buttressing bonesTwin-based linker molecules, top left, self-assemble
into six-molecule rings. Stacked in a tube shape, the
 rings of molecules not only provide a new scaffold
for bone growth, but can also store growth factors
and helpful drugs inside.

    Credit: Webster Lab/Brown University
The molecules are artificial, but made from elements that are no strangers to the body: carbon, nitrogen, and oxygen. At room temperature their aggregate form is a liquid, but the material they form solidifies at body temperature. The molecules look like nanoscale tubes (billionths of a meter wide), and when they come together, it is in a spiraling ladder-shaped arrangement reminiscent of DNA or collagen. That natural structure makes it easy to integrate with bone tissue.

In the space within the nanotubes, the team, which includes graduate student Linlin Sun, has managed to stuff in various drugs including antibiotics, anti-inflammatory agents, and bone growth factors, which the tubes release over the course of months. Even better, different recipes of TBL, or Arxis, can be chemically tuned to become as hard as bone or as soft as cartilage, and can solidify in seconds or minutes, as needed. Once it is injected, nothing else is needed.

“We really like the fact that it doesn’t need anything other than temperature to solidify,” Webster said. Other compounds that people have developed require exposure to ultraviolet light and cannot therefore be injected through a tiny syringe hole. They require larger openings to be created.


Liquid provides a solid fix for broken bones from Brown PAUR on Vimeo.


For all of TBL’s apparent benefits, they have only been demonstrated in cow bone fragments in incubators on the lab bench top, Webster said. TBL still needs to be proven in vivo and, ultimately, in human trials. Part of the agreement with Audax will include support to continue the material’s clinical development. Audax research and development director Whitney Sharp, a Brown alumna (Sc.B., 2008; Sc.M., 2009), is now working with Webster’s group.

“They see the future where hopefully we will get to the point where we won’t be implanting these huge pieces of metal into people,” Webster said. “Instead we’ll be implanting things through a needle that could be used to heal a hip that’s more natural.”
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest
Posted in audax, nano, sharp, tissue, webster | No comments
Newer Post Older Post Home

0 comments:

Post a Comment

Subscribe to: Post Comments (Atom)

Popular Posts

  • Brown Engineering Alumni H. David Hibbitt Ph.D. ’72 and Enrique Lavernia ’82 Elected to the National Academy of Engineering
    Brown University engineering alumni H. David Hibbitt Ph.D. ’72 and Enrique Lavernia ’82 have been elected to the National Academy of Enginee...
  • Indo-US Science and Technology Forum collaborates with Brown
    Created in March 2000, the Indo-US Science and Technology Forum (IUSSTF), established under an agreement between the Governments of India an...
  • Alumni Dr. George Thurston '73 will present on Asthma and Diesel Air Pollution
    Diesel Air Pollution and Asthma in New York City Presented by Dr. George D. Thurston '73 Dept. of Environmental Medicine NYU School of M...
  • Thomas Powers named Director of Graduate Programs for School of Engineering
    Professor Thomas Powers has been named the director of graduate programs at the School of Engineering at Brown University for the 2011-12 ac...
  • Nurmikko and Donoghue join U.S. BRAIN initiative
    Neuroscientist John Donoghue and engineer Arto Nurmikko were on hand at the White House Tuesday morning, April 2, as President Barack Obama ...
  • Freund honored by ASME for his contributions to materials engineering
    Lambert Ben Freund, Ph.D., the Henry Ledyard Goddard university processor and a professor of engineering at Brown University (Providence, R....
  • Device Replicates Complex Bird Songs
    A team of researchers, including Shreyas Mandre, have developed a simple rubber device that is able to replicate many different bird songs. ...
  • Meet the New Faculty: Jacob Rosenstein
    Biological sensors that detect currents at the nanoscale would have important clinical applications, but how to separate signal from noise w...
  • Brown Engineering Alumna Jeanie Ward-Waller ’04 Bicycling Across the Country for Safe Routes
    Jeanie Ward-Waller ’04, a Brown University civil engineering alumna, is bicycling across the country as part of an advocacy campaign to rais...
  • Wei Yang PhD ‘85 among eight honorary degree recipients at Brown Commencement
    During its 244th Commencement, Brown University will confer eight honorary doctorates: Carolyn Bertozzi, biochemist; Viola Davis, actress; J...

Categories

  • "Sirinrath Sirivisoot"
  • aaas
  • aaron
  • abet
  • accreditation
  • aceros
  • ACS
  • admission
  • admissions
  • advanced baby imaging lab
  • AIChE
  • AIChE ugrad award
  • AIMBE
  • almeida
  • alumni
  • Andrew Peterson
  • apoE4
  • archaeology
  • archambault
  • argyria
  • ARPA-E
  • article
  • artificial ovary
  • asme
  • associate dean
  • audax
  • audio
  • awar
  • award
  • axena
  • Aziz
  • Baek
  • bahar computer conference
  • banyan
  • bashevkin
  • bats
  • battery
  • beam
  • BEAR Day
  • bio
  • biodiesel
  • biofilm
  • biofuel
  • blume
  • bme
  • bmes
  • book
  • borton
  • bower
  • brain initiative
  • Brain Science
  • brain sensor
  • brain-computer interface
  • braingate
  • braingate2
  • breuer
  • breuer bats reuters
  • briant
  • brown institute of brain science
  • bull
  • bull risd car
  • business plan
  • calakli
  • calo
  • CAMR
  • car
  • carbon
  • career fair
  • Caswell
  • catena
  • cave
  • CfNN
  • chemical innovation program
  • China
  • civil engineering
  • coda
  • coe-sullivan
  • collaboration
  • commencement
  • competition
  • Computational Materials Science
  • concussion
  • cooper
  • cord-clamping
  • crisco
  • crisco risd
  • CRL
  • Curet
  • curtin
  • cyberkinetics
  • dang
  • dean
  • decker
  • deisley
  • deoni
  • desai
  • desktop delta-v
  • dingman
  • DOE
  • donoghue
  • donovan
  • Durmus
  • dworak
  • eastman conference
  • ejiofor
  • election
  • elevator pitch
  • emanuel
  • emotive
  • Empower
  • en4
  • energy-momentum spectroscopy
  • ENGN 1930G
  • entrepreneurship
  • Entreprenuership
  • EPSCOR
  • escuti
  • event
  • ewb
  • faculty
  • feature
  • fellowship
  • Felzenszwalb
  • fleeter
  • fluid dynamics
  • franck
  • freund
  • fsae
  • fulbright
  • gao
  • General Motors
  • GhostBot
  • gidmark
  • gingerbread
  • GM
  • GM/Brown
  • grad
  • graduate
  • grant
  • grantab
  • graphene
  • greis
  • guduru
  • guo
  • haberstroh
  • halpin
  • halpin prize
  • Hargus
  • hazeltine
  • heart
  • hibbitt
  • HnC
  • hochberg
  • huebscher
  • hurt
  • hurt cfl nyt
  • hydrokinetic
  • IE
  • IIT-Bombay
  • IMNI
  • implant
  • Indo-US
  • innovation
  • institute of medicine
  • international
  • internship
  • jackson
  • jadhav
  • jakubek
  • Jay
  • JCD Wind
  • jepsen
  • joukowsky
  • JPL
  • kane
  • kesari
  • keynote
  • Kim
  • klout
  • Kristie Chin
  • kulaots
  • Külaots
  • kumar
  • Kummer
  • lacrosse
  • larson
  • laser
  • laulicht
  • lavernia
  • Lazos
  • Lee
  • LEGO
  • LIB
  • light emission
  • liquid bone
  • lithium ion battery
  • Liu Finalist GEMS Award
  • lubricin
  • lysaght
  • magnet
  • malik
  • Mandre
  • maris
  • materials
  • Materials Research
  • mathiowitz
  • mba
  • mccalla
  • Mechanics
  • Megan Buczynski
  • mentor
  • mercury
  • metamaterials
  • metaphotonics
  • MGI
  • mittlemann
  • morgan
  • muri
  • NAE
  • nano
  • nanoparticles
  • nanopatch
  • nanoscience
  • nanoskin
  • nanotechnology
  • nanotubes
  • nanovis
  • NASA
  • Needleman
  • neuroengineering
  • Neurorestoration
  • Neuroscience
  • neurotechnology
  • NewMech
  • NewMech2012
  • nih
  • nsf
  • NSFC
  • nurmikko
  • nurse
  • open house
  • optical
  • osteoarthritis
  • overhead.fm
  • pacifici
  • padture
  • palmore
  • palmore hoffmankim nih
  • paper
  • patent
  • paxson
  • pecase
  • Peterson
  • petteruti
  • Phi Beta Kappa
  • photos graduation
  • powers
  • powers editor journal
  • president
  • prime
  • PRIME Omega-3
  • Privicare
  • PriWater
  • profiles
  • project
  • publication
  • publication leadership
  • qd vision
  • Raimondo
  • rainwater
  • ramesh
  • Ramos
  • rankings
  • reda
  • reed
  • Reggiannini
  • research
  • richardson
  • risd
  • Riviere
  • robot
  • robots
  • rome
  • rosakis
  • Rosenstein
  • Runa
  • salomon award
  • sarin
  • schutter
  • scripta materialia
  • selenium
  • SES
  • sharp
  • sheldon
  • shenoy
  • sigma xi
  • silver
  • Silverman
  • simeral
  • simulia
  • SMART
  • solar
  • Solar4Cents
  • space
  • Speramus
  • Spira
  • stac
  • startup
  • stem outreach
  • Stout
  • summer
  • superfund
  • suuberg
  • swe
  • sygiel
  • takamoto biogas
  • tau beta pi
  • taubin
  • taylor
  • team
  • timoshenko
  • tissue
  • tissue engineering
  • tran
  • tripathi
  • tsang
  • twitter
  • ugrad
  • VA
  • van de Walle
  • venture for america
  • video
  • Vlahovska
  • wadia
  • wang
  • warshay
  • watson
  • website
  • webster
  • webster nano
  • webster nurmikko bio conference
  • Wells
  • weng
  • wireless
  • workshop
  • yang
  • yin
  • zhang
  • zhang webster star award phd
  • zia
  • zia nsf award

Blog Archive

  • ►  2013 (18)
    • ►  April (1)
    • ►  March (5)
    • ►  February (4)
    • ►  January (8)
  • ►  2012 (76)
    • ►  December (5)
    • ►  November (8)
    • ►  October (9)
    • ►  September (5)
    • ►  August (6)
    • ►  July (6)
    • ►  June (5)
    • ►  May (4)
    • ►  April (8)
    • ►  March (11)
    • ►  February (6)
    • ►  January (3)
  • ►  2011 (95)
    • ►  December (7)
    • ►  November (9)
    • ►  October (8)
    • ►  September (11)
    • ►  August (8)
    • ►  July (4)
    • ►  June (3)
    • ►  May (10)
    • ►  April (7)
    • ►  March (10)
    • ►  February (10)
    • ►  January (8)
  • ▼  2010 (55)
    • ▼  December (13)
      • Twenty-three Students Inducted into Tau Beta Pi
      • Malaria-infected cells stiffen, block blood flow
      • How do you cut a nanotube? Lots of compression
      • Bashevkin and Deisley Win 2010-2011 Doris M. and N...
      • Dr. Candace Lynch, Air Force Research Laboratory E...
      • New Nanotechnology Patent: Material and Method for...
      • In the lab, engineer’s novel liquid provides a sol...
      • Rachel Decker Accepted into Entrepreneurial Fellow...
      • Brown Students Perform Well at Elevator Pitch Contest
      • Lorin Jakubek and Nitin Jadhav Win 2010 Archambaul...
      • Extreme Gingerbread Competition a Success
      • Nanotechnology and nanomaterials: Promises for imp...
      • Grant gives new life to the virtual reality Cave
    • ►  November (8)
    • ►  October (3)
    • ►  September (2)
    • ►  August (5)
    • ►  July (1)
    • ►  June (2)
    • ►  May (8)
    • ►  April (5)
    • ►  March (2)
    • ►  February (4)
    • ►  January (2)
  • ►  2009 (46)
    • ►  December (7)
    • ►  November (2)
    • ►  October (4)
    • ►  September (4)
    • ►  August (2)
    • ►  July (5)
    • ►  June (4)
    • ►  May (6)
    • ►  April (5)
    • ►  March (1)
    • ►  February (4)
    • ►  January (2)
  • ►  2008 (15)
    • ►  December (1)
    • ►  November (4)
    • ►  October (1)
    • ►  September (1)
    • ►  August (2)
    • ►  July (3)
    • ►  June (2)
    • ►  April (1)
  • ►  2007 (1)
    • ►  February (1)
Powered by Blogger.

About Me

Unknown
View my complete profile